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A B S T R A C T

The COVID-19 pandemic has caused unprecedent negative impacts on our society, however, evidences show a
reduction of anthropogenic pressures on the environment. Due to the high importance of environmental condi-
tions on human life quality, it is crucial to model the impact of COVID-19 lockdown on environmental conditions.
Consequently, the objective of this study was to model the impact of COVID-19 lockdown on the urban surface
ecological status (USES). To this end, the Landsat-8 images of Milan for three pre-lockdown dates (Feb 13, 2018
(MD1), April 18, 2018 (MD2) and Feb 3, 2020 (MD3)) and one date over the lockdown (April 14, 2020 (MD4)),
and Wuhan for three pre-lockdown dates (Dec 17, 2017 (WD1), March 23, 2018 (WD2) and Dec 7, 2019 (WD3))
and one lockdown date (Feb 9, 2020 (WD4)) were used. First, pressure-state-response (PSR) framework parame-
ters including index-based built-up index (IBI), vegetation cover (VC), vegetation health index (VHI), land surface
temperature (LST) and Wetness were calculated. Second, by combining the PSR framework parameters based on
comprehensive ecological evaluation index (CEEI), the USES were modeled on different dates. Thirdly, the USES
during the COVID-19 lockdown was compared with the USES for pre-lockdown. The mean (standard deviation)
of CEEI for Milan on MD1, MD2, MD3 and MD4 were 0.52 (0.12), 0.60 (0.19), 0.57 (0.13) and 0.45 (0.16), re-
spectively. Also, these values for Wuhan on WD1, WD2, WD3 and WD4 were 0.63 (0.14), 0.67 (0.15), 0.60 (0.13)
and 0.57 (0.13), respectively. Due to the lockdowns, the mean CEEI of built-up, bare soil and green spaces for
Milan and Wuhan decreased by [0.18, 0.02, 0.08], [0.13, 0.06, 0.05], respectively. During the lockdown period,
the USES improved substantially due to the reduction of anthropogenic activities in the urban environment.

1. Introduction

Coronavirus disease, also known as COVID-19, is an infectious dis-
ease caused by the coronavirus Acute Respiratory Syndrome
(SARS-CoV-2) (Lai et al., 2020). The disease was first reported in
Wuhan, China on December 31, 2019, and outbroke rapidly around the
world due to its contagious nature in a way that involved all coun-
tries of the world (Qin et al., 2020). COVID-19 was recognized as an
epidemic on January 2020 (Velavan and Meyer, 2020). Nearly 61
million people in the world are infected by the disease until Novem-
ber 25, 2020, of whom 1,420,000 persons have died (WHO, 2020).
Due to the huge impact of COVID-19 on people's health and with
the increase in the number of cases of this disease, most countries
have introduced special and preventive rules and proceedings for so-
cial interactions in order to prevent the spread of the virus (Lau et
al., 2020). These special and deterrent proceedings include enforc-
ing social/physical distancing recommendations, banning public

events, closing schools, universities and unnecessary jobs, closing coun-
ties, borders, and dramatically reducing train, bus, and air travels (Gao
et al., 2020; Nicola et al., 2020). Lockdown regulations were also re-
inforced in many global large cities (Mahato et al., 2020; Muhammad
et al., 2020; Nakada and Urban, 2020).

The prevalence of COVID-19 and the implemented lockdowns
around the world have had a significant negative impact on the global
economy. However, the environment has been relieved of the pres-
sures of anthropogenic activities on a local, regional and global scales
(Chakraborty and Maity, 2020; Muhammad et al., 2020; Nakada
and Urban, 2020; Zambrano-Monserrate et al., 2020). Due to the
high importance of environmental conditions on human life quality
(Firozjaei et al., 2020c), it is of outmost important to model the im-
pact of COVID-19 lockdown on environmental conditions (Berman and
Ebisu, 2020; Nakada and Urban, 2020).
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Recent studies used earth observation data to model the impact of
COVID-19 lockdown on environmental conditions, for instance, Tobías
et al. (2020) evaluated air pollution changes in Barcelona during lock-
down. The results showed that during the lockdown, air pollution in
Barcelona, especially traffic-related pollutants such as carbon black and
NO2, was significantly reduced. Nakada and Urban (2020) examined
the impact of COVID19 lockdown on air quality in Sao Paulo, Brazil.
The results showed that the amount of NO, NO2 and CO in the air of
this state decreased by 70, 54.3 and 64.8%, respectively during the lock-
down period compared to the pre-lockdown period, however, the con-
centration of Ozone in this area increased by 30% for the same period
due to a significant reduction in carbon monoxide. Mandal and Pal
(2020) examined the effects of lockdown on various aspects of the en-
vironmental conditions of an area in eastern India, including noise, par-
ticulate matter (PM10), land surface temperature (LST) and river water
quality. The results show that the maximum concentration of PM10 from
189 to 278 μg/m3 in the pre-lockdown period reached to 50–60 μg/m3

in the lockdown period. The LST reduced by 3–5°, noise levels also de-
creased from 85 dBA to 85 dBA along with improvement of river water
quality.

The results of these studies showed that due to the complete ces-
sation of industrial, transportation and tourism sectors and a signifi-
cant reduction in population accumulation in public spaces during the
COVID-19 lockdown, the adverse effects of these activities on the envi-
ronment have been substantial reduced.

The urban surface ecological status (USES) indicate the urban envi-
ronmental conditions and is one of the factors affecting the human life's
quality. Consequently, it is crucial to model the spatial and temporal
changes of USES. This parameter is a function of the parameters related
to the pressure-state-response (PSR) framework. The components of this
framework include climate responses, environmental states and anthro-
pogenic pressures. The purpose of this study is to model the impact of
COVID-19 lockdown on the USES.

The remainder of this paper is structured as follows, section 2 pre-
sents the study area and section 3 presents the data and methods used in
the study. Section 4 presents the results followed by discussions in sec-
tion 5 summing up with conclusions in section 6.

2. Study area

To evaluate the impact of COVID-19 lockdown on the USES, Milan
and Wuhan cities as two hot spots of outbreak were selected as study
areas (Fig. 1). COVID-19 had a significant impact on the conditions of
Milan and Wuhan cities among other cities in the world. The prevalence
of COVID-19 seemed to start from Wuhan. By November 25, 2020, more
than 148,000 and 50,340 people were infected by this disease in Milan
and Wuhan cities, respectively. The number of deaths due to COVID-19
in these cities were 10,765 and 3869 people as of November 12, 2020,
respectively (WHO, 2020). The COVID-19 lockdown dates was from
Mar 10, 2020 to Apr 8, 2020 for Milan city and Jan 23, 2020 to Apr 8,
2020 for Wuhan city.

Milan is located in 9° 5′ 51´´ to 9° 16′ 44´´ E longitude and from 45°
25′ 42´´ to 45° 32′ 10´´ N latitude in the north of Italy, which is the
second most populous city in Italy with a population of more than 1.4
million. This city is of great economic and cultural importance. Milan
city has hot and humid summers and cold and foggy winters. The mean
elevation of this city is 120 m above sea level.

Wuhan is located in 114° 3′ 40´´ to 114° 32′ 58´´ E longitude and
from 30° 28′ 8´´ to 30° 46′ 38´´ N latitude of China. With a population
of over 11 million, it is one of the most populous, political, economic,
financial, commercial, cultural and educational city in central China.
Wuhan has relatively cold winters and hot and rainy summers.

3. Data and methods

3.1. Data

To extract surface characteristics including different spectral indices
and land cover maps, and to model the impact of COVID-19 lock-
down on USES, Landsat-8 reflective and thermal bands were used.
For each of the cities, 4 Landsat-8 images from different dates were
selected. These images include one suitable image during the lock-
down period (April 14, 2020 (MD4) for Milan and Feb 9, 2020 (WD4)
for Wuhan), one suitable image at the closest possible date before
the start of the lockdown (Feb 3, 2020 (MD3) for Milan and Dec 7,

Fig. 1. Geographical location of study area and their land cover information.
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2019 (WD3) for Wuhan) and two suitable images in the closest possi-
ble dates to the first two images in previous years (Apr 18, 2018 (MD2)
and Feb 13, 2018 (MD1) for Milan and Mar 23, 2018 WD2) and Dec
17, 2017 (WD1) for Wuhan). Images were selected based on time condi-
tions relative to the lockdown date of each city and cloud cover less than
10%. Moreover, weather conditions have been considered in the dates,
and for at least 4 days before the selected dates, there was no rainfall
in the studied cities. Row and Path specifications of these images are 29
and 193 for Milan city and 39 and 123 for Wuhan city, respectively. The
characteristics of Landsat-8 images are provided in Weng et al. (2019).
Google Earth images were used to extract training-testing datasets for
land cover classification. Daily water vapor (MOD07) and surface tem-
perature products (MOD11A1) were also used to calculate the LST ob-
tained from the Landsat-8 reflective and thermal bands.

3.2. Methods

The schematic flowchart shown in Fig. 2 was used to model and
evaluate the impact of COVID-19 lockdown on the USES. In the first
step, the parameters related to the PSR framework including in-
dex-based built-up index (IBI), vegetation cover (VC), vegetation health
index (VHI), LST and Wetness were calculated based on the combination
of Landsat-8 reflective and thermal bands at different dates. In the sec-
ond step, by combining the information of PSR framework parameters
based on CEEI, the USES were modeled at different dates. In the third
step, the USES during the COVID-19 lockdown period were compared
against the USES in the pre-lockdown period.

3.2.1. PSR framework parameters
The used spectral indices and methods to extract the PSR frame-

work parameters are presented in Table 1. Normalized difference veg-
etation index (NDVI) is one of the most widely used index in assess-
ment and modeling of vegetation (Robinson et al., 2017). VC can
show vegetation fraction in one pixel in the range of 0–1 values in-
dicating pixels with least vegetation cover i.e., totally impervious or
soil surface to pixels with most vegetation cover i.e., totally vegeta-
tion, respectively (Sobrino et al., 2008). VC can easily demonstrate
the vegetation fraction in one pixel; however, not ideal for indicat-
ing vegetation health. Hence, VHI was used to tackle this challenge,
since it considers the levels of chlorophyll, nitrogen and xanthophyll
for quantifying vegetation health (Yang et al., 2020). Consequently,
in order to consider each of these characteristics, NDVI, nitrogen re-
flectance index (NRI), and normalized difference senescent vegetative
index (NDSVI), which represent chlorophyll, nitrogen, and xanthophyll
were combined using Principal Component Analysis (PCA) and conse-
quently VHI was calculated (Yang et al., 2020). Studies show that IBI
is highly effective in showing the percentage of impervious surface cover
in a pixel. A pixel with a higher IBI value contains a higher fraction
of built-up (Hu and Xu, 2018; Xu, 2008). Wetness can indicate the
amount of moisture in the surface of various covers including built-up,
bare soil and vegetation covers. The use of tasseled cap transforma-
tion (TCT) is one of the most common methods for modeling spatial
heterogeneity of wetness (Baig et al., 2014). LST is one of the most
important surface physical properties that can indicate the exchange
of thermal energy between the subsurface, surface and the atmosphere
(Jiménez-Muñoz et al., 2014; Weng et al., 2019). Studies have
shown that increasing human activity in an area increases LST (Firoz-
jaei et al., 2018, 2020d; Xiao and Weng, 2007). Also, spatial and

Fig. 2. Schematic flowchart of the conducted study.
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Table 1
The spectral indices and methods used for modeling PSR framework parameters.

Parameters PSR framework Equation References

IBI Pressure intensity (Hu and
Xu,
2018;
Xu,
2008)

NDVI Environmental states Sobrino
et al.
(2008)

VC

NRI Yang et
al.
(2020)

NDSVI
VHI

Wetness Climate responses Baig et
al.
(2014)

LST Jiménez-
Muñoz
et al.
(2014)

temporal changes in LST can be a function of climatic conditions (Weng,
2009).

Information from at least two or more reflective and thermal bands
of satellite images was used to calculate these parameters. The quick at-
mospheric correction (QUAC) model was used for atmospheric correc-
tion of Landsat-8 reflective bands. This model is straightforward and re-
quires minimal inputs for atmospheric correction. The NDVI threshold
method (Sobrino et al., 2008) was used to calculate the land surface
emissivity in the LST calculation. In this study, the third component ob-
tained from TCT was used to model the surface wetness properties.

The support vector machines (SVM) method was used to generate
land cover maps (Foody and Mathur, 2004; Otukei and Blaschke,
2010). This method is one of the non-parametric and supervised classi-
fication methods. The main advantage of this method is its high ability
to use less training samples and its reported higher accuracy compared
to other methods. The main purpose of this algorithm is to find the max-
imum distance between two classes and thus increase the classification
accuracy. In this study, the RBF kernel (With set 300 for C and 3 for γ)
were used in the SVM model to classify land cover.

3.2.2. USES modeling
CEEI is one of the efficient methods for modeling USES (Yang et al.,

2020). In this method, the PSR framework parameters (Hughey et al.,
2004; Xu et al., 2019) is combined with each other using Eq. (1) to
model the USES.

(1)

In equation (1), PC1 indicates the USES’ spatial heterogeneity. The
amount of anthropogenic activities in an area has a high correlation
with the percentage of impervious surface covers. Consequently, IBI was
used to consider pressure intensity. VC and VHI were used to consider
environmental states that reflect cover and quality of vegetation. Finally,
LST and Wetness were used to consider climate responses such as hu-
midity and temperature conditions (Yang et al., 2020). Of course, pres-
sure intensity on the environment caused by anthropogenic activities
can also have a high correlation with LST.

To reduce the effects of seasonal changes and climatic conditions
in modeling the trend of USES changes, each of the PSR framework
parameters at different dates, was standardized into 0 and 1 based
on the maximum and minimum values of each characteristic. Accord-
ing to the type of impact of each parameter on the USES, Eq. (2)
was used for LST and IBI standardization and

Eq. (3) was used for VC, VHI and Wetness standardization.

(2)

(3)

In equations (2) and (3), was the values of the standardized pa-
rameters, was the initial values of the parameters, and and
were the lowest and highest parameter values in the area, respectively.

In this study, to quantify the USES, the standardized parameters re-
lated to the PSR framework have been used as Eq. (4).

(4)
The CEEI value obtained from Eq. (4) is standardized into 0 and 1

using Eq. (2). Values of 1 and 0 for CEEI indicate the worst and best
USES, respectively. Areas with maximum LST and IBI and minimum VC,
VHI and Wetness have the worst USES and vice versa. Before the im-
plementation of CEEI, water covers were masked based on the selection
of an appropriate threshold of NDVI. CEEI values were classified into 5
levels of USES based on Table 2 (Hu and Xu, 2018; Xu et al., 2018;
Yang et al., 2020).

3.2.3. Modeling the effect of the lockdowns on the USES
To investigate the impact of COVID-19 lockdown on the USES, the

following steps were followed:

1. The mean and standard deviation (SD) of surface characteristics of
Milan and Wuhan cities including heat (LST), greenness (NDVI),
imperviousness and dryness surface (IBI) and wetness (Wetness) in
COVID-19 lockdown date and pre-lockdown dates were calculated
and compared against each other.

2. The mean and SD of the CEEI of Milan and Wuhan at the COVID-19
lockdown date and the pre-lockdown dates were calculated and com-
pared.

3. The area of the different USES classes of Milan and Wuhan cities at
the COVID-19 lockdown date and the pre-lockdown date was calcu-
lated and compared.

4. Based on Table 3, the type of change in the USES of Milan and
Wuhan cities between the lockdown date and the pre-lockdown dates
was deter
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Table 2
The USES classes based on CEEI.

CEEI
ranges

USES
classes Descriptions

0.0–0.02 Excellent These areas have excellent USES. Ecosystem performance is
excellent. These areas have complete and healthy vegetation
and there are no human activities in these areas

0.2–0.4 Very
good

These areas have very good USES. Ecosystem performance is
very good. These areas have a lot of healthy vegetation and
human activities are very low in these areas.

0.4–0.6 Good These areas have good USES. These areas have moderate
vegetation and human activities in these areas are not much.
The effect of urban heat island in these urban areas is not
obvious.

0.6–0.8 Fair These areas have fair USES. Ecosystem performance is not
good, but it is a restoration function. These areas have poor
vegetation and human activities in these areas are high. The
effect of an urban thermal island is evident in these urban
areas.

0.8–1.0 Poor These areas have poor USES. Ecosystem performance is
unfavorable. These areas lack vegetation and human
activities in these areas are very high and the effect of urban
heat island and drought in these urban areas is obvious.

mined. Then, the area of Improved, Unchanged and Degraded classes
was calculated.

5. The mean CEEI of Milan and Wuhan cities at the lockdown date and
the pre-lockdown dates were calculated for each land cover class and
compared with each other.

6. The mean CEEI difference between the COVID-19 lockdown date and
the pre-lockdown date was calculated and compared at the study area
and each land cover scale.

7. The correlation coefficient (r) between the impervious surface degree
(IBI) and the CEEI changes of Milan and Wuhan in the lockdown date
and the pre-lockdown date was calculated and evaluated.

4. Results

The spatial distribution of surface characteristics of Milan and
Wuhan cities in different dates was found heterogeneous as shown in
Fig. 3. A visual examination of the surface characteristics maps shows
that the amount of LST and IBI of the built-up lands was higher than the
areas with other lands. Also, the amount of NDVI and Wetness of areas
with built-up lands was less than other areas. The spatial and tempo-
ral variations of LST in both cities are greater than NDVI, IBI and Wet-
ness. The biggest differences in surface characteristics patterns between
built up and non-built up areas of Milan and Wuhan are for MD2 and
WD2, respectively. The LST changes during COVID-19 lockdown (MD4
for Milan and WD4 for Wuhan) compared to the same dates in 2018
were more than other surface characteristics. Many areas with high LST
values on MD2 (Milan) and WD2 (Wuhan) were changed to areas with
medium and low LST values on MD4 (Milan) and WD4 (Wuhan). How-
ever, changes in other surface characteristics at these dates were not
high relative to LST changes.

The mean and SD of the surface characteristics of these cities in
different dates were different due to seasonal changes, land cover and
human activities changes (Table 4). For Milan, the difference in SD
of LST values for the dates MD4 (1.29 °C) and MD2 (2.21 °C) was
greater than the dates MD3 (1.03 °C)

and MD1 (0.89 °C). For Wuhan, the difference in SD values of LST for
dates WD4 (2.02 °C) and WD2 (3.44 °C) was more than WD3 (1.63 °C)
and WD1 (1.53 °C). COVID-19 lockdown has significantly reduced the
spatial heterogeneity of LST in Milan and Wuhan cities. This result
shows that the impact of human activities on the spatial distribution of
surface characteristics can be greater than the impact of climatic and
seasonal conditions. The impact of human activities on the spatial dis-
tribution of IBI and Wetness in Wuhan was greater than in Milan. The
mean of NDVI and LST in Milan city was higher than in Wuhan city. For
Milan city, the highest SD values were IBI, NDVI and Wetness on MD4.
In general, the temporal changes in the surface characteristics of Milan
city were more than Wuhan city.

The spatial distribution of CEEI values in Milan and Wuhan cities
varies at different dates (Fig. 4). Urban areas with built-up land cover
have the highest CEEI values due to the low values of greenness and
wetness and high values of the impervious cover, dryness and heat.
The USES of Milan city on MD1 worsened compared to MD2. Conse-
quently, the ecological conditions of many areas with Good and Fair
classes on MD1 were changed to Poor class on MD2. However, due to
the COVID-19 lockdowns and the significant reduction of human activ-
ities, the ecological conditions of this city improved from MD3 to MD4.
Ecological conditions of most parts of Milan city were changed from Fair
and Good classes to Good and Very good classes. For Milan, the spatial
similarity of CEEI values on MD3 and MD1 was higher than on MD4 and
MD2. The correlation coefficient (r) between CEEI values on these dates
were 0.76 and 0.63, respectively. For Wuhan, the changes in ecological
conditions on WD1 compared to WD2 were more than the changes on
WD3 compared to WD4. The r between CEEI values on WD1 and WD3
and on WD2 and WD4 was 0.88 and 0.79, respectively.

The mean (SD) of CEEI for Milan on MD1, MD2, MD3 and MD4 were
0.52 (0.12), 0.60 (0.19), 0.57 (0.13) and 0.45 (0.16), respectively. Also,
these values for Wuhan on WD1, WD2, WD3 and WD4 were 0.63 (0.14),
0.67 (0.15), 0.60 (0.13) and 0.57 (0.13), respectively. In all dates, the
best USES were related to the green space lands of Milan and Wuhan
cities (Table 5). For the pre-lockdown dates, the worst USES was related
to built-up lands in these cities, but in the lockdown date, the mean CEEI
decreased and was lower than the mean CEEI of bare soil lands. The
lowest and highest differences between the mean CEEI of built-up lands
and green space lands were in the date of lockdown (MD4 for Milan and
WD4 for Wuhan) and the similar dates in last year (MD2 for Milan and
WD2 for Wuhan). In general, the results show that among the different
dates, the best USES in Milan and Wuhan cities were on the lockdown
dates.

The highest area of Excellent and Very good classes and the lowest
area of Fair and Poor classes in both Milan and Wuhan cities were re-
lated to the COVID-19 lockdown date (Table 6). The results show that
among the different dates, the best USES in Milan and Wuhan cities were
related to the COVID-19 lockdown dates. However, the USES of these
cities were bad on the same dates in previous years. The highest area
of Poor class for Milan and Wuhan cities was related to MD2 and WD2
dates, respectively, due to the various factors such as climatic and sea-
sonal conditions and human activities.

The USES of more than 70% of Milan city have improved on MD4
compared to MD2 (Table 7). Also, USES of only 2.5% of Milan have
been destroyed on MD4 compared to MD3, while this amount was
more than 45% on MD2 compared to MD1. For Wuhan the USES
of more than 52% of this city on COVID-19 lockdown date (WD4)
improved than USES on WD2. Conse

Table 3
Type of change in USES classes between pre-lockdown date and lockdown dates.

Lockdown date

Pre-lockdown date Excellent Very good Good Fair Poor
Excellent Unchanged Degraded Degraded Degraded Degraded
Very
good

Improved Unchanged Degraded Degraded Degraded

Good Improved Improved Unchanged Degraded Degraded
Fair Improved Improved Improved Unchanged Degraded
Poor Improved Improved Improved Improved Unchanged
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Fig. 3. Surface characteristic maps including heat (LST (°C)), greenness (NDVI), imperviousness and dryness (IBI) and wetness of Milan and Wuhan at pre-lockdown (MD1, MD2, and MD3
for Milan and WD1, WD2 and WD3 for Wuhan) and during the lockdown (MD4 for Milan and WD4 for Wuhan) dates.
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Table 4
Mean (SD) of surface characteristics including heat (LST), greenness (NDVI), impervious-
ness and dryness (IBI) and wetness (Wetness) of Milan and Wuhan cities at pre-lockdown
(MD1, MD2, and MD3 for Milan and WD1, WD2 and WD3 for Wuhan) and during the
lockdown (MD4 for Milan and WD4 for Wuhan) dates.

MD1 MD2 MD3 MD4
Milan LST

(°C)
9.45
(0.89)

28.77
(2.21)

12.69
(1.03)

31.28
(1.29)

IBI 0.38
(0.09)

0.32
(0.10)

0.39
(0.08)

0.31
(0.12)

NDVI 0.24
(0.15)

0.33
(0.17)

0.21
(0.13)

0.36
(0.19)

Wetness 0.02
(0.01)

0.03
(0.02)

0.02
(0.01)

0.02
(0.02)

WD1 WD2 WD3 WD4
Wuhan LST

(°C)
8.88
(1.53)

20.01
(3.44)

13.15
(1.63)

19.41
(2.02)

IBI 0.42
(0.09)

0.40
(0.09)

0.42
(0.07)

0.41
(0.09)

NDVI 0.19
(0.11)

0.22
(0.11)

0.18
(0.10)

0.19
(0.11)

Wetness 0.04
(0.02)

0.036
(0.02)

0.060
(0.03)

0.046
(0.02)

quently, this amount was less than 24% on WD3 compared to WD1. The
implies a significant impact of COVID-19 lockdown on the USES. During
the lockdown, the USES significantly improved compared to the similar
date last year.

With the significant reduction of human activities in the urban en-
vironment due to the COVID-19 lockdown ; in 2020, the USES of these
cities in the same climatic and seasonal conditions significantly im-
proved. The average CEEI differences in different lands vary between
different dates (Table 8). For Milan, the mean CEEI difference between
MD4 and MD2 in built-up, bare soil, and green spaces were −0.18,
−0.02 and −0.08, respectively. Also, for Wuhan, the mean difference
of CEEI between WD4 and WD2 in these lands were −0.13, −0.06 and
−0.05, respectively. This indicates the greatest changes in USES between
the COVID-19 lockdown date and the pre-lockdown dates were related
to the built-up lands. The r the impervious surface degree (IBI) and the
CEEI changes of Milan and Wuhan cities in the COVID-19 lockdown
date and its corresponding date last year (MD2 for Milan and WD2 for
Wuhan) for the Milan and Wuhan cities were −0.91 and −0.84, respec-
tively. Most changes in USES have been in urban areas with high imper-
vious surface degree.

5. Discussions

Environmentally unfriendly human activities in some urban environ-
ments have increased substantially in recent years as reported by many
studies such as Firozjaei et al. (2020d), Chen et al. (2019) and
Wang et al. (2019). These activities increased environmental conse-
quences such as the formation and increase intensity of urban heat is-
land, increase air and water pollution, degradation of USES, increased
thermal discomfort, etc. (Chakraborty et al., 2015; Firozjaei et al.,
2020b; Mijani et al., 2020; Nakada and Urban, 2020; Stone,
2008). Given the importance of environmental conditions on the human
living quality, quantification of the impact of human activities on vari-
ous environmental contexts in urban areas is of great importance (Dead-
man et al., 1993; Hu and Xu, 2018; Xu et al., 2018). Various studies
have emphasized the need to reduce destructive human activities in nat-
ural and artificial environments to prevent degradation while improv-
ing environmental conditions (Firozjaei et al., 2020c; Gaur et al.,
2018; Mohajerani et al., 2017; Xu et al., 2018). The prevalence of
COVID-19 has created large restrictions for our societies (Velavan and
Meyer, 2020). However, the adoption of solutions in the form of so-
cial/physical distancing recommendations, the banning of public events,
the closure of schools, universities and unnecessary carriers, the closure
of external borders and finally lockdown became a mandatory factor in
reducing the pressure of human activities on the environment (Nicola
et al., 2020).

lockdowns significantly reduced air and water pollution (Berman and
Ebisu, 2020; Zambrano-Monserrate et al., 2020), noise pollution
(Mandal and Pal, 2020). The rate of USES improvement in the urban
environment during the lockdowns compared to pre-lockdown period
was highly correlated with the percentage of impervious surface. In pre-
vious studies, it was shown that the percentage of impervious surface
can be a proper factor to indicate the degree of human activity (Firoz-
jaei et al., 2020d; Li et al., 2018; Sultana and Satyanarayana,
2019). Increasing the impervious surfaces reduces evapotranspiration,
increases the LST, increases the urban heat island intensity and reduces
the quality of the USES (Firozjaei et al., 2020c). Urban areas with
built-up lands have the highest CEEI values due to the low value of
greenness and wetness and high value of impervious surface cover, dry-
ness and heat (Figs. 3 and 4 and Table 5). During the lockdown pe-
riod, due to the decrease in human activities, the heat and dryness of the
built-up land area decreased significantly, so that the most improvement
in USES was related to urban areas with a high percentage of impervi-
ous surface cover. Consequently, the results of this study confirm that
reducing human activities in the urban environment can be one of the
most effective and useful solutions to improve environmental conditions
(Firozjaei et al., 2020d; Xu et al., 2018). Also, COVID-19 lockdowns
affected the percentage of vegetation and vegetation health. The effect
of lockdowns on plant health is due to a significant reduction in air and
water pollution.

In this study, CEEI was used to model the surface ecological status
of the urban area. By applying this index, parameters related to PSR
framework were used to model the USES (Xu et al., 2019; Yang et al.,
2020). The components of this framework include climate responses,
environmental states and anthropogenic pressures. Consequently, due to
considering more dimensions of environmental conditions, it can have
a higher efficiency than other indices such as EI and RSEI in modeling
the USES. The advantage of CEEI over RSEI in modeling the USES is the
consideration of vegetation health that is not considered in RSEI. CEEI is
very fast, simple, scalable, flexible in modeling the USES (Yang et al.,
2020).

One of the important challenges in this study is modeling the tem-
poral changes of USES due to changes in human activities (Xu et al.,
2018). Modeling the daily USES changes with high spatial resolution in
urban environments can be important, versatile and useful. To solve this
challenge, the use of satellite imagery with a better temporal resolution
than Landsat, such as MODIS images, can be used. However, the spa-
tial resolution of these images is low, which due to the heterogeneity
of various characteristics and parameters related to PSR framework in
the urban environment, the use of these images can be less informative
(Agathangelidis and Cartalis, 2019; Essa et al., 2017). Using down-
scaling techniques to improve the spatial resolution of satellite images
with low spatial resolution can be useful to solve this challenge (Agath-
angelidis and Cartalis, 2019; Ebrahimy and Azadbakht, 2019;
Mukherjee et al., 2014). Also, different effects of climatic conditions
such as solar incident angle, wind, air temperature, wind speed, relative
humidity, etc. On the USES at different dates can reduce the accuracy of
modeling the effect of COVID-19 lockdown on the USES. To overcome
this challenge, the use of normalization methods to reduce the impact of
climatic conditions on the USES can be useful (Firozjaei et al., 2020a;
Weng et al., 2019).

6. Conclusions

The prevalence of COVID-19 had significant negative effects on
various aspects of human life in urban and non-urban environments.
However, due to reduction of human activities during the lockdown
period, the environmental conditions of different parts of the world
during this period can be improved. The main purpose of this study
was to model the impact of COVID-19 lockdowns on the environment
via USES. In this study, CEEI has been used to model and compare
the USES during the lockdown and pre-lockdown periods. The results
show the significant impact of COVID-19 lockdown on the USES. Dur-
ing the lockdown period, the USES have significantly improved due
to the reduction of destructive human activities in the urban environ-
ment. The best USES is related to green spaces. Within the COVID-19
pre-lockdown, the worst USES were related to built-up lands in these
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Fig. 4. The USES maps of Milan and Wuhan cities at pre-lockdown (MD1, MD2, and MD3 for Milan and WD1, WD2 and WD3 for Wuhan) and during the lockdown (MD4 for Milan and
WD4 for Wuhan) dates.

Table 5
The mean CEEI for land cover in Milan and Wuhan cities at pre-lockdown (MD1, MD2,
and MD3 for Milan and WD1, WD2 and WD3 for Wuhan) and during the lockdown (MD4
for Milan and WD4 for Wuhan) dates.

MD1 MD2 MD3 MD4
Milan Green

space
0.36 0.35 0.39 0.33

Built-
up

0.62 0.76 0.65 0.55

Bare
soil

0.54 0.63 0.56 0.61

WD1 WD2 WD3 WD4
Wuhan Green

space
0.46 0.48 0.44 0.41

Built-
up

0.67 0.75 0.66 0.59

Bare
soil

0.65 0.72 0.64 0.62

between the COVID-19 lockdown period and the COVID-19 pre-lock-
down period were related to the built-up lands. The r between the
percentage of impervious surface cover and CEEI changes between the
COVID-19 lockdown date

Table 6
The area of USES classes of Milan and Wuhan at pre-lockdown (MD1, MD2, and MD3 for
Milan and WD1, WD2 and WD3 for Wuhan) and during the lockdown (MD4 for Milan and
WD4 for Wuhan) dates (Km 2).

MD1 MD2 MD3 MD4
Milan Excellent 2.59 7.76 2.66 17.30

Very
good

30.54 27.09 21.99 49.06

Good 96.00 46.04 74.60 82.60
Fair 67.57 82.41 95.88 47.77
Poor 0.07 33.48 1.65 0.00

WD1 WD2 WD3 WD4
Wuhan Excellent 5.72 10.98 8.34 10.91

Very
good

81.15 51.17 95.41 120.19

Good 400.26 308.34 455.28 525.56
Fair 643.05 602.15 645.23 579.75
Poor 106.71 264.27 32.65 0.51
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Table 7
Changes in the USES of Milan and Wuhan cities at pre-lockdown (MD1, MD2, and MD3
for Milan and WD1, WD2 and WD3 for Wuhan) and during the lockdown (MD4 for Milan
and WD4 for Wuhan) dates (km 2 (%)).

MD2&MD1 MD4&MD3 MD4&MD2 MD3&MD1
Milan Improved 15.99

(8.12)
102.03
(51.84)

139.68
(70.97)

8.22 (4.17)

Unchanged 91.68
(46.58)

89.94
(45.70)

52.25
(26.55)

141.45
(71.87)

Degraded 89.12
(45.28)

4.81 (2.44) 4.86 (2.46) 47.12
(23.94)

WD2&WD1 WD4&WD3 WD4&WD2 WD3&WD1
Wuhan Improved 94.42

(7.63)
244.03
(19.72)

643.33
(52.02)

294.69
(23.82)

Unchanged 767.06
(62.02)

908.12
(73.43)

519.81
(42.02)

808.04
(65.34)

Degraded 375.42
(30.35)

84.75
(6.85)

73.76
(5.96)

134.18
(10.84)

Table 8
The mean difference of CEEI of Milan and Wuhan at pre-lockdown (MD1, MD2, and MD3
for Milan and WD1, WD2 and WD3 for Wuhan) and during the lockdown (MD4 for Milan
and WD4 for Wuhan) dates.

MD2&MD1 MD4&MD3 MD4&MD2 MD3&MD1
Milan Green

space
0.00 −0.05 −0.08 0.03

Built-
up

0.14 −0.08 −0.17 0.05

Bare 0.09 0.04 −0.02 0.02
WD2&WD1 WD4&WD3 WD4&WD2 WD3&WD1

Wuhan Veg 0.04 −0.01 −0.05 −0.02
Built-
up

0.03 −0.05 −0.13 −0.03

Bare 0.06 −0.02 −0.06 −0.04

and its corresponding pre-lockdown date is high. Results of this study
show that the effect of human activities on the heterogeneity of spatial
distribution of surface ecological status in the urban environment can be
higher than the effect of other parameters such as climatic conditions. In
future studies, the impact of COVID-19 lockdown on the USES of cities
in different climatic conditions can be investigated and the impact of cli-
matic conditions on it needs to be evaluated in more details. Also, the
use of techniques to improve spatial and temporal resolution to produce
daily USES maps and the impact of human activities on it with high spa-
tial and temporal resolution can be considered in future studies. Despite
the fact that COVID-19 pandemic has caused tremendous damages to
our society in terms of health and economy, it has brought up thoughts
about transferring some of the lessons learned from the pandemic and
its lockdowns for climate change and its emerging consequences.
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